
User Guide of the TNSP

Wang Chao, Dong Shaojun

September 23, 2017

2

Contents

1 Installment 5

2 Creation of a Tensor 7
2.1 Declaration of a Tensor . 7
2.2 Set the Datatype and the Shape of a Tensor . 7
2.3 Set Value to a Tensor . 9
2.4 Set Names of Tensor Indices . 10
2.5 Useful Functions . 11

3 Get Information from a Tensor 13
3.1 Output Information of a Tensor on Screen . 13
3.2 Get Datatype and Structure Information . 14
3.3 Get Tensor Elements . 16
3.4 Function on a Tensor . 17
3.5 Dot Product of two tensors . 18

4 Operation on Tensors 19
4.1 Operation on elements . 19
4.2 Fusion and split of tensor indices . 20
4.3 Permutation of tensor indices . 20
4.4 Composition . 22
4.5 Decomposition . 24

5 Input/Output of a Tensor 27

6 Parallel Programming 29
6.1 The MPI mode . 29
6.2 Inter-core Transportation of Tensors . 29
6.3 Some MPI functions on tensors . 30

7 Others 33
7.1 Options . 33
7.2 Random Number Generator . 33
7.3 Writemess . 34
7.4 Pointer . 34

3

4 CONTENTS

Chapter 1

Installment

TNSP can be installed with make. Configuration have to be set in the make.inc file. A make.inc for a Linux
machine(ubuntu 16.04) running GNU compilers is given in the main directory. Then the user can do ”make”
in the current directory to build the standard library ”libTensor-x”(x for version), and do ”make test” to
run the test PEPS program.

Before using DSJ’s Tensor Package, the following module should be used

1 use Tensor_type

2 use Tools

To use the TNSP in your code, you should use the following option when compiling your code

1 -I$(TNSP)/libTensor-x

and the following option to link your code with the TNSP

1 -L$(TNSP)/libTensor-x -llibTensor-x

, where $(TNSP) is the TNSP directory and x is the version. And make sure you have linked the TNSP
with the blas and lapack.

The package is also required to be compiled by OpenMPI using the compiler mpif90. The TNSP uses
many features of the Fortran 2003 standard, and can be successfully compiled by gfortran compiler later
than 4.8.4 version.

gfortran compiler can be downloaded at https://gcc.gnu.org/fortran/. In Unbuntu, it can be in-
stalled by a quick command

1 sudo apt-get install gfortran

Openmpi can be downloaded at https://www.open-mpi.org/. In Unbuntu, it can be installed by a
quick command

5

https://gcc.gnu.org/fortran/
https://www.open-mpi.org/

6 CHAPTER 1. INSTALLMENT

1 sudo apt-get install libopenmpi-dev

Lapack and Blas can be downloaded at http://www.netlib.org/lapack/. In Unbuntu, it can be in-
stalled by a quick command

1 sudo apt-get install liblapack-dev

A copy of the latest version of tensor package can be requested from sj.dong@outlook.com. The bugs of
the package may also be reported to the same email.

http://www.netlib.org/lapack/
mailto:tyrant@mail.ustc.edu.cn

Chapter 2

Creation of a Tensor

2.1 Declaration of a Tensor

The most basic data type in the Tensor package is type(Tensor). A variable with such type is declared as

1 type(Tensor)::my_tensor

After declaration of a tensor, its status is empty. That means the tensor has no shape or datatype(type
of data). Before we use the tensor, we need to determine its datatype and shape, which will be introduced
in the next section.

2.2 Set the Datatype and the Shape of a Tensor

The datatype of a tensor is the datatype of its elements. The package currently doesn’t not support elements
of a tensor with different datatypes, so the datatype of all elements of a tensor is always the same.

An tensor can have three status:

1. An empty tensor has no shape or datatype.

2. A static tensor has a shape and a fixed datatype.

3. A dynamic tensor has a shape and a variable datatype.

A static tensor has fixed datatype. If we make an operation that may change its datatype, a proceeding
type transformation will always be performed automatically to keep the datatype of the tensor unchanged.
A dynamic tensor have no fixed datatype. Its datatype can always be changed by operations or assignments.

A tensor after declaration is empty. We can set the shape and the datatype of an empty tensor, and
make it a static one, by the type-bound procedure:

1 allocate(int dims(:), int/chars datatype)

where the dims argument is an 1-D integer array that specifies the shape of the tensor (which includes the
rank of the tensor as size(dims) and dimensions of indices of the tensor as dims(1), dims(2) . . .). The

7

8 CHAPTER 2. CREATION OF A TENSOR

Datatype Data type of
Tensor elements

Abbreviation
Integer String

1 ‘integer’ integer i

2
’real’

real(kind=4) s‘real*4’
‘real(kind=4)’

3
’double’

real(kind=8) d‘real*8’
‘real(kind=8)’

4
’complex’

complex(kind=4) c‘complex*8’
‘complex(kind=4)’

5
‘complex*16’

complex(kind=8) z
‘complex(kind=8)’

6 ‘logical’ logical l

7 ‘character’ character(len=*) a

Table 2.1: Pre-set datatypes and corresponding data types of tensor elements.

datatype argument is an integer or a string that specifies the datatype of tensor elements, which must be
chosen within several pre-set values, as listed in Tab. 2.1.

For example, the following statement generates a 3× 4× 2 tensor with double-precision real elements.

1 use Tensor_type

2 type(Tensor)::my_tensor

3 complex*16::data2(3,2,2)

4

5 data2=dcmplx(1.2,2)

6 call my_tensor%allocalte([3,4,2],’real*8’) ! my_tensor is now a 3× 4× 2 ’static’ tensor

7 ! with double-precision real elements

8 ! It’s elements are 0 by default.

9 my_tensor=data2 ! my_tensor is now a 3× 2× 2 ’static’ tensor with

10 ! double-precision real elements.

11 ! It’s elements are all 1.2, since a type transformation

12 ! from complex*16 to real*8 has been implicitly conducted

There’s no procedure to transform an empty tensor into a dynamic one. This is automatically performed
when we assign an array or another tensor to an empty tensor. For example:

1 use Tensor_type

2 type(Tensor)::my_tensor,another_tensor

3

4 !

5 ! Here we may assign some values to another_tensor

6 !

2.3. SET VALUE TO A TENSOR 9

7

8 my_tensor=another_tensor ! my_tensor is now a dynamic tensor with the same

9 ! shape and data as another_tensor

or

1 use Tensor_type

2 type(Tensor)::my_tensor

3 integer::data1(3,4)

4 real*8::data2(3,2,2)

5

6 data1=1

7 my_tensor=data1 ! my_tensor is now a 3× 4 dynamic integer tensor with

8 ! the same data as data1

9 data2=0.2d0

10 my_tensor=data2 ! my_tensor is now a 3× 2× 2 dynamic double precision real

11 ! tensor with the same data as data2

As shown from the examples above, unlike static tensors, a dynamic tensor doesn’t have fixed datatype.
So it’s more flexible but easier to cause precision problems. In practical use, dynamic tensors are usually
used as immediate variables, and static tensors are usually used to save crucial data.

For a dynamic tensor, we can fix its datatype and render it static by type-bound procedure:

1 Static()

And for a static tensor, we can release the control of its datatype and render it dynamic by type-bound
procedure:

1 Dynamic()

2.3 Set Value to a Tensor

As already shown in previous examples, we can set value to a tensor by assignment statements

1 my_tensor=tensor2

or

1 my_tensor=array

As already illustrated, if my_tensor is empty or dynamic, it will become exactly tensor2 or array. If
my_tensor is static, a type transformation may be automatically performed.

We can also change the value of a single tensor element by the type-bound procedure

10 CHAPTER 2. CREATION OF A TENSOR

1 set_value(int pos(:,:,...), value)

where pos is a multi-dimensional array specifies the position of the element. For example

1 use Tensor_type

2 type(Tensor)::my_tensor

3 integer::data(3,4)

4

5 data=1

6 my_tensor=data ! my_tensor(1,2)=1

7 call my_tensor%setValue([1,2],2.1d0) ! my_tensor(1,2)=2

Note that a type transformation may be automatically performed even if we set value to a tensor element of
a dynamic tensor, in order to satisfy that all elements of a tensor have the same datatype.

2.4 Set Names of Tensor Indices

A tensor may have several indices, which are conventionally labeled by integers. After a sequence of complex
operations including contraction, SVD, QR decomposition . . . Its very hard to remember which integer means
which index. To solve such problem, we may assign a name to each index of a tensor, which free us from
keeping track of the indices during tensor operations. A standard name of an index has the syntex A.b,
where the part before the dot is interpreted as the name of the tensor and the part after the dot is the actual
name of the index. We can set the name of an index by the type-bound procedure

1 setName(int n, chars name)

where n identifies the index we want to set the name and should be less than or equal to the rank of the
tensor, and name is just the index name. For example:

1 use Tensor_type

2 type(Tensor)::my_tensor

3 integer::data(3,4)

4

5 data=1

6 my_tensor=data

7 call my_tensor%setName(1,’tn.left’) ! we set the index name of the 1st index of

8 ! my_tensor as tn.left

9 call my_tensor%setName(2,’tn.right’) ! we set the index name of the 2nd index of

10 ! my_tensor as tn.right

11 call my_tensor%setName(1,’tn.up’) ! we replace the index name of the 1st index

12 ! of my_tensor as tn.up

2.5. USEFUL FUNCTIONS 11

Have set the index name of some index of a tensor, we can replace it with some other index name by a
variation of setName

1 setName(chars old_name, chars new_name)

For example

1 use Tensor_type

2 type(Tensor)::my_tensor

3 integer::data(3,4)

4

5 data=1

6 my_tensor=data

7 call my_tensor%setName(1,’tn.left’) ! we set the index name of the 1st index of

8 ! my_tensor as tn.left

9 call my_tensor%setName(’tn.left’,’tn.up’) ! we replace the index name of the 1st index

10 ! of my_tensor by tn.up

Note that we should always make sure that there’s no two indices of a tensor with the same index name.

2.5 Useful Functions

A quick way to generate ramdom matrix is through the type-bound procedure

1 random()

For example

1 use Tensor_type

2 type(Tensor)::my_tensor

3

4 call my_tensor%allocalte([3,4,2],’real*8’)

5 call my_tensor%random() ! now my_tensor is a random tensor

Note that my_tensor should be non-empty (thus has a shape) before we randomize it.

We can generate a diagonal matrix (as a rank-2 tensor) by the type-bound procedure

1 eye(array,int D1, int D2)

2 eye(array)

3 eye(int D1, int D2)

12 CHAPTER 2. CREATION OF A TENSOR

The procedure has three varieties. If the input parameters include an array together with integers D1
and D2, the returned value is a D1×D2 matrix (as a dynamic tensor) with datatype and diagonal elements
same as the input array. If the If dimension of the input array is larger that D1 or D2 then there’s a cut-off.
the input parameter is only an array, the returned value is a D × D matrix with datatype and diagonal
elements same as the input array, where D is the dimension of the input array. If the input parameters are
integers D1 and D2, the returned value is a D1×D2 integer matrix, with all diagonal elements 1.

For example

1 use Tensor_type

2 type(Tensor)::my_tensor

3

4 my_tensor=eye([0.5,0.4],3,3) ! now my_tensor is a 3× 3 matrix: diag(0.5, 0.4, 0)
5 my_tensor=eye(2,2) ! now my_tensor is a 2× 2 identy matrix

Chapter 3

Get Information from a Tensor

We have learnt how to build a tensor. In this section we introduce some procedures to get information from
an already-built tensor, which includes datatype, rank, dimension of each index, name of each index and
tensor elements.

3.1 Output Information of a Tensor on Screen

During coding, we need to check if the tensor is what we want from time to time. This task is accomplished
by procedures to output information of a tensor on screen.

Firstly we can output the basic information of a tensor on screen by the type-bound procedure

1 dimInfo()

Secondly we can output the elements of a tensor on screen by the type-bound procedure

1 print()

For example

1 use Tensor_type

2 type(Tensor)::my_tensor

3 integer::data(3,4)

4

5 data=reshape([1,2,3,4,5,6,7,8,9,0,1,2],[3,4])

6 my_tensor=data

7 call my_tensor%setName(1,’tn.left’) ! we set the index name of the 1st index of

8 ! my_tensor as tn.left

9 call my_tensor%setName(2,’tn.right’) ! we set the index name of the 2nd index of

10 ! my_tensor as tn.right

11 call my_tensor%dimInfo() ! output structure information of my_tensor

12 ! on screen

13 call my_tensor%print() ! output tensor elements on screen

13

14 CHAPTER 3. GET INFORMATION FROM A TENSOR

The output on screen would be

1 ==================

2 ------------------

3

4 *** START ***

5 Dynamic class Tensor,data type is integer

6 The rank of the Tensor is

7 2

8 The number of data of the Tensor is

9 12

10 *** Dimension Data ***

11 3 , 4

12 *** Dimension END ***

13 index Name are

14 tn.left , tn.right

15

16 ***end***

17

18 ==================

19 ------------------

20 Dynamic,integer

21 *** START ***

22 1 4 7 0

23

24 2 5 8 1

25

26 3 6 9 2

27

28 *** END ***

3.2 Get Datatype and Structure Information

The datatype of a tensor can be accessed by the type-bound procedure

1 int getType()

The returned value is an integer representing the datatype of the tensor, as explained in Tab. 2.1. Or by
the type-bound prodcedure

1 chars(20) getclassType()

The returned value is an string of 20 characters representing the datatype of the tensor, as explained in Tab.
2.1.

The rank of a tensor can be accessed by the type-bound procedure

3.2. GET DATATYPE AND STRUCTURE INFORMATION 15

1 int getRank()

The returned value is the rank of the tensor.

The dimension of each index of a tensor can be accessed by the type-bound procedure

1 int(:) dim()

2 int dim(int n)

3 int dim(chars indexName)

This procedure has three varieties. If there is no input parameter, the returned value is an array of dimensions
of all indices. If the input parameter is an integer n, the returned value is the dimension of the nth index. If
the input parameter is a string of characters, the returned value is the dimension of the index specified by
the input string as the index name.

The name of an index of a tensor can be accessed by the type-bound procedure

1 chars(len=length of index name)(:) outName()

2 chars(len=length of index name) outName(int n)

This procedure has two varieties. If there is no input parameter, the returned value is an array of string of
charactoers containing names of all indices. If the input parameter is an integer n, the returned value is the
name of the nth index.

An example of the four procedures above is

1 use Tensor_type

2 type(Tensor)::my_tensor

3 integer::data(3,4),my_type,my_rank,dim1,dim2,dims(2)

4 character(len=20)::char_type,index_nm1,index_nms(2)

5

6 data=reshape([1,2,3,4,5,6,7,8,9,0,1,2],[3,4])

7 my_tensor=data

8 call my_tensor%setName(1,’tn.left’) ! we set the index name of the 1st index of

9 ! my_tensor as tn.left

10 call my_tensor%setName(2,’tn.right’) ! we set the index name of the 2nd index of

11 ! my_tensor as tn.right

12 my_type=my_tensor%getType() ! get the datatype of my_tensor which is 1

13 ! for integer

14 char_type=my_tensor%getclassType() ! get the datatype of my_tensor which is

15 ! ’integer’

16 my_rank=my_tensor%getRank() ! get the rank of my_tensor which is 2

17 dims=my_tensor%dim() ! get the dimensions of all indices of

18 ! my_tensor

19 dim1=my_tensor%dim(1) ! get the dimension of 1st index of my_tensor

20

16 CHAPTER 3. GET INFORMATION FROM A TENSOR

21 dim2=my_tensor%dim(’tn.right’) ! get the dimension of the index of my_tensor

22 ! with index name ’tn.right’

23 index_nm1=my_tensor%outName(1) ! get the name of 1st index of my_tensor

24 ! which is ’tn.left’

25 index_nms=my_tensor%outName() ! get the names of indices of my_tensor

26 ! which is [’tn.left’,’tn.right’]

3.3 Get Tensor Elements

The tensor functions introduced above return the basic information of a tensor, thus their returning values
have definite types.

There are also tensor functions that return the calculation result fo a tensor. The type of their returning
values may depend on the datatype of themselves. Such kind of tensor functions are usually named as

1 ?function(...)

, where ‘?’ is absent or a character in i, s, d, c, z, l, a. When ‘?’ is absent, the returning value is a tensor.
When ‘?’ is in i-a, the returning value has the type abbreviated by ‘?’ as listed in Tab. 2.1.

The type-bound procedure

1 ?i(int pos(:))

2 ?i()

returns the elements of a tensor.
When there is no input, the output is an 1d array (if ‘?’ in i-a) or a tensor (if ‘?’ is absent) of all tensor

elements. We can also use an integer array pos to specify the position of the output element. For example

1 use Tensor_type

2 type(Tensor)::my_tensor

3 real*8::data(3,4),data2(3,4),data3

4 integer::data4(3,4)

5

6 data=reshape([1.1,2.1,3.1,4.1,5.1,6.1,7.1,8.1,9.1,0.1,1.1,2.1],[3,4])

7 my_tensor=data

8 data2=reshape(my_tensor%di(),[3,4]) ! get the elements of my_tensor

9 data3=my_tensor%di([2,2]) ! get the element of my_tensor at [2,2]

10 data4=reshape(my_tensor%ii(),[3,4]) ! get the elements of my_tensor as integers

The user-defined unitary operator

1 .?i.

with syntax T.?i.pos serves the same job as T%?i(pos).

3.4. FUNCTION ON A TENSOR 17

3.4 Function on a Tensor

The largest element of a tensor can be derived by the type-bound procedure

1 ?maxmin(chars ctr)

If input is absent, the output is the element with largest real part. If the input is ’maxr’, the return
value is the real part of the element with the maximal real part. If the input is ’maxi’, the return value is
the imaginary part of the element with the maximal image part. If the input is ’maxa’, the return value
is the absolute value of the element with the maximal absolute value. If the input is ’minr’, ’mini’, ’mina’,
minimal value is returned similarly.

For example

1 use Tensor_type

2 type(Tensor)::my_tensor

3 complex*16::data(2,2)

4 real*8::maxre,maxim,maxabs,minre,minim,minabs

5

6 data=reshape([dcmplx(1.1,1.2),dcmplx(1.3,1.4),dcmplx(1.5,1.6),dcmplx(1.7,1.8)],[2,2])

7 my_tensor=data

8

9 maxre=my_tensor%dmaxmin(’maxr’) ! = 1.70

10 maxim=my_tensor%dmaxmin(’maxi’) ! = 1.80

11 maxabs=my_tensor%dmaxmin(’maxa’) ! = 2.48

12 minre=my_tensor%dmaxmin(’minr’) ! = 1.10

13 minim=my_tensor%dmaxmin(’mini’) ! = 1.20

14 minabs=my_tensor%dmaxmin(’mina’) ! = 1.63

The sum of all elements of a tensor can be derived by the type-bound procedure

1 ?sum()

The trace of a matrix (a rank-2 tensor) can be derived by the type-bound procedure

1 ?trace()

The norm of a tensor defined by the sum of the squared absolute values of all elements can be derived
by the type-bound procedure

1 ?norm2()

whose squared root is returned by the type-bound procedure

18 CHAPTER 3. GET INFORMATION FROM A TENSOR

1 ?norm()

An example of the four functions above is

1 use Tensor_type

2 type(Tensor)::my_tensor

3 complex*16::my_sum,my_trace

4 real*8::my_norm,my_norm2

5

6 call my_tensor%allocate([5,5],’complex*16’)

7 call my_tensor%random()

8

9 my_sum=my_tensor%zsum() ! my_sum is now the sum of all elements of my_tensor

10 my_trace=my_tensor%ztrace() ! my_trace is now the trace of my_tensor

11 my_norm=my_tensor%dnorm() ! my_norm is now the 2-norm of my_tensor

12 my_norm2=my_tensor%dnorm2() ! my_norm2 is now the squared 2-norm of my_tensor

3.5 Dot Product of two tensors

The dot product can be conducted conveniently using user defined operator

1 .?x.

2 .?dot.

When taking dot product, two tensors are treated as 1-D arrays. The .?x. operator will conjugate the first
tensor while the .?dot. operator won’t. For example

1 use Tensor_type

2 type(Tensor)::A,B

3 real*8::dot1,dot2

4

5 call A%allocate([5],’complex*16’)

6 call A%random()

7 call B%allocate([5],’complex*16’)

8 call B%random()

9

10 dot1=A.dx.B ! now dot1=
∑

iA
∗
iBi

11 dot2=A.ddot.B ! now dot2=
∑

iAiBi

Caution: Note that the priority of user-defined operators are always lower than in-built operators. So
we may put the statement in brackets properly.

Chapter 4

Operation on Tensors

In this chapter we introduce some operations on tensors. The operations are classified into five categories
according to their behaviors.

4.1 Operation on elements

In this section we introduce some operations that acts on each element independently. The first operation
is to take conjugation on each element, performed by the over-loaded function

1 conjg(tensor)

For example

1 use Tensor_type

2 type(Tensor)::my_tensor

3 complex*16::data(2,2)

4

5 data=reshape([dcmplx(1.1,1.2),dcmplx(1.3,1.4),dcmplx(1.5,1.6),dcmplx(1.7,1.8)],[2,2])

6 my_tensor=data

7 my_tensor=conjg(my_tensor) ! now my_tensor is conjugated

The user-defined unitary operator

1 .con.

serves the same job.
Then there are four arithmetic operators +, −, ∗ and / overloaded to act on tensors.
+ and − take the sum or difference of two tensors of same rank and same dimension of each rank. For

example

1 T3=T1+T2

2 T4=T1-T2

19

20 CHAPTER 4. OPERATION ON TENSORS

Note that the user should make sure that indices of the two tensors are of the same order. One can also add
a number to or subtract a number from each element of a tensor by

1 T2=T1+num

2 T3=T1-num

Similarly one can multiply a number to each element of a tensor or divide each element of a tensor by a
number by

1 T2=T1*num

2 T3=T1/num

4.2 Fusion and split of tensor indices

In this section we introduce two operations fuse and split indices.
To fuse some continuous indices into one index, we can use the type-bound procedure

1 fuse(int (i:j))

, which fuse ith to jth indices of the original tensor into one index.
The type-bound procedure

1 split()

splits all legs that has been fused.

4.3 Permutation of tensor indices

In this section we introduce some operations that permutes tensor indices, which may be useful in some
cases.

The major way to permute the indices of a tensor is to use the type-bound procedure

1 permute(int/chars order())

The input value is an array of integers or an array of strings of characters. If we input an array of integer,
it should be a permutation of {1. . . n}, where n is the rank of the tensor. Then we permute the indices of
the tensor as defined by the input permutation. If we input an array of strings of characters, it should be a
specific arrangement of the index names, and specifies the new order of the indices.

The same task can also be accomplished by the user-defined operator

1 .p.

4.3. PERMUTATION OF TENSOR INDICES 21

Sometimes it’s desired to permute an index of a tensor into the first or last order. This task is performed
by the type-bound procedures

1 forward(int/chars index)

and

1 backward(int/chars index)

The forward procedure permutes the ith index or the index specifies by name into the first order. The
backward procedure permutes the ith index or the index specifies by name into the last order.

The two procedures each have a variety

1 forward(int/chars index(:))

and

1 backward(int/chars index(:))

where multiple indices specified by the input are permuted to the first or last order.
The same task can also be accomplished by the user-defined operator

1 .pf.

and

1 .pb.

We give an example of the 3 operations talked above

1 use Tensor_type

2 type(Tensor)::my_tensor

3

4 call my_tensor%allocate([2,2,2,2],’real*8’)

5 call my_tensor%setname(1,’tn.1st’)

6 call my_tensor%setname(2,’tn.2nd’)

7 call my_tensor%setname(3,’tn.3rd’)

8 call my_tensor%setname(4,’tn.4th’) !order: 1st, 2nd, 3rd, 4th

9 call my_tensor%permute([’tn.4th’,’tn.3rd’,’tn.2nd’,’tn.1st’])

10 !order: 4th, 3rd, 2nd, 1st

11 call my_tensor%forward(’tn.1st’) !order: 1st, 4th, 3rd, 2nd

12 call my_tensor%backward(’tn.4th’) !order: 1st, 3rd, 2nd, 4th

22 CHAPTER 4. OPERATION ON TENSORS

Caution: Since fortran2003 only supports an array of strings of characters with the same length. If different
index names have different length, we may need to add some blanks before or after the index name. The
blanks are automatically trimmed inside the package and will not affect the result.

The quick way to permute a rank-2 tensor(or a matrix) is to use the over-loaded function

1 transpose(tensor)

The operator

1 .H.

performs the Hermitian transformation of a rank-2 tensor.

An example of the 2 operations above is

1 use Tensor_type

2 type(Tensor)::A,At,Ah

3 complex*16::data(2,2)

4

5 data=reshape([dcmplx(1.1,1.2),dcmplx(1.3,1.4),dcmplx(1.5,1.6),dcmplx(1.7,1.8)],[2,2])

6 A=data

7 At=transpose(A) ! At = AT

8 Ah=.H.A ! Ah = A†

4.4 Composition

In this section we introduce some operations that compose two tensors together.
Firstly, we can compose two tensors together by contracting some indices. This is performed by the

function

1 contract(tensorA, chars indexA(:), tensorB, chars indexB(:))

2 contract(tensorA, tensorB)

The input values of the first variety contain two arrays of strings of characters: indexA is an array of index
names of tensorA, and indexB is an array of index names of tensorB. We compose tensorA with tensorB

by contracting indexA(i) index with indexB(i) index for all i. By the second variety, we compose tensorA
and tensorB together by contracting indices with identical names.

For example

1 use Tensor_type

2 type(Tensor)::L,R,LR

3

4 call L%allocate([2,2,2,2],’real*8’)

4.4. COMPOSITION 23

5 call L%random()

6 call L%setname(1,’L.up’)

7 call L%setname(2,’L.down’)

8 call L%setname(3,’L.right1’)

9 call L%setname(4,’L.right2’)

10

11 call R%allocate([2,2,2,2],’real*8’)

12 call R%random()

13 call R%setname(1,’R.up’)

14 call R%setname(2,’R.down’)

15 call R%setname(3,’R.left1’)

16 call R%setname(4,’R.left2’)

17

18 LR=contract(L,[’L.right1’,’L.right2’],R,[’R.left1’,’R.left2’])

19 ! L and R are composed into LR with L.right1 contracted with R.left1 and

20 ! L.right2 contracted with R.left2

The whole process is illustrated in Fig. 4.1.

L R
L.right1 R.left1

L.up

R.down

LR

R.up

R.down

L.down

R.up

L.right2 R.left2

L.down

L.up

Figure 4.1: Contractiong of two tensors.

Secondly we can take the direct product of two tensors by the user-defined operator

1 .kron.

For example

1 use Tensor_type

2 type(Tensor)::L,R,LR

3

4 call L%allocate([2,2],’real*8’)

24 CHAPTER 4. OPERATION ON TENSORS

5 call L%random()

6 call L%setname(1,’L.up’)

7 call L%setname(2,’L.down’)

8

9 call R%allocate([2,2],’real*8’)

10 call R%random()

11 call R%setname(1,’R.up’)

12 call R%setname(2,’R.down’)

13

14 LR=L.kron.R ! L and R are composed into LR by direct product

4.5 Decomposition

In this section we introduce some operations that decompose a tensor into multiple tensors.
Firstly we can subtract a smaller tensor from the original tensor by fixing an index. This is performed

by the type-bound procedure

1 subtensor(chars indexname,int value)

The subtensor is obtained by fixing the index specified by indexname at value.
Secondly we can perform a QR decomposition using the type-bound procedure

1 QRTensor(tensor A, chars nameQ, chars nameR)

The input value nameQ and nameR tell us how to make the decomposition. The input tensor should satisfies
that each index has the name nameQ.??? or nameR.???. Then the indices started with nameQ is fused into
one index, and the indices started with nameR is fused into another index. Then the tensor A becomes a
rank-2 tensor. We can perform a QR decomposition, and decompose it into two tensors Q and R. Finally
we split the indices that has been fused, and return the tensors as an array [Q,R]. Note that the last index
of the tensor Q and the first index of the tensor R are newly generated and have no names.

For example

1 use Tensor_type

2 type(Tensor)::T,QR(2),Q,R

3

4 call T%allocate([2,2,2,2],’real*8’)

5 call T%random()

6 call T%setname(1,’Q.up’)

7 call T%setname(2,’Q.left’)

8 call T%setname(3,’R.down’)

9 call T%setname(4,’R.right’)

10

11 QR=T%QRTensor(’Q’,’R’)

12 Q=QR(1)

4.5. DECOMPOSITION 25

13 call Q%setname(Q%getRank(),’Q.new’) ! Q now contains indices: Q.up, Q.left, Q.new

14 R=QR(2)

15 call R%setname(1,’R.new’) ! R now contains indices: R.down, R.right, R.new

The whole process is illustrated in Fig. 4.2

Q RQ.new R.new

Q.up

R.down

Q.left R.right

QR

Q.up

R.down

Q.left R.right

Figure 4.2: QR decomposition.

Similarly we can perform an LQ decomposition using the type-bound procedure

1 LQTensor(tensor, chars nameL, chars nameQ)

and the result is an array [L,Q].

Finally we can perform a singular value decomposition(SVD) using the type-bound function

1 SVDTensor(tensor, chars nameL, chars nameR)

2 SVDTensor(tensor, chars nameL, chars nameR, int Dcut)

The result is an array [L,S,R]. S is the array of singular values. The last index of the tensor L and the
first index of the tensor R are newly generated and has no name. The optional input Dcut specifies the
truncation we made during the process of SVD. If there’s no input Dcut, no truncation will be performed.
If we input Dcut, S will be Dcut dimensional, and only the first Dcut largest singular values are retained.

For example

1 use Tensor_type

2 type(Tensor)::T,SVD(3),L,S,R

3

4 call T%allocate([2,2,2,2],’real*8’)

5 call T%random()

26 CHAPTER 4. OPERATION ON TENSORS

6 call T%setname(1,’L.up’)

7 call T%setname(2,’L.left’)

8 call T%setname(3,’R.down’)

9 call T%setname(4,’R.right’)

10

11 SVD=T%SVDTensor(’L’,’R’,3) ! Only first 3 largest singular values are retained

12 L=SVD(1) ! L is unitary (or orthogonal)

13 call L%setname(L%getRank(),’Q.new’)

14 S=eye(SVD(2)%di()) ! S is diagonal

15 call S%setname(1,’S.left’)

16 call S%setname(2,’S.right’)

17 R=SVD(3)) ! R is unitary (or orthogonal)

18 call R%setname(1,’R.new’)

The whole process is illustrated in Fig. 4.3

L RL.new R.new

L.up

R.down

L.left R.right

T

L.up

R.down

L.left R.right

SS.left S.right

Figure 4.3: Singular value decomposition.

Chapter 5

Input/Output of a Tensor

In the design of a program, we sometimes want to save the tensor in a file, or to read the previously saved
tensor from a file. These tasks are accomplished by the type-bound procedures

1 write(int file)

and

1 read(int file)

where file is the file unit.
For example

1 use Tensor_type

2 type(Tensor)::my_tensor, new_tensor

3 integer::data(3,4)

4

5 data=reshape([1,2,3,4,5,6,7,8,9,0,1,2],[3,4])

6 my_tensor=data

7

8 call my_tensor%setName(1,’tn.left’) ! we set the index name of the 1st index of

9 ! my_tensor as tn.left

10 call my_tensor%setName(2,’tn.right’) ! we set the index name of the 2nd index of

11 ! my_tensor as tn.right

12

13 open(1,file=’tensor.dat’)

14 call my_tensor%write(1) ! save my_tensor to tensor.dat

15 close(1)

16

17 open(2,file=’tensor.dat’)

18 call new_tensor%read(2) ! read new_tensor from tensor.dat

19 ! now new_tensor is identical to my_tensor

20 close(2)

27

28 CHAPTER 5. INPUT/OUTPUT OF A TENSOR

Chapter 6

Parallel Programming

The TNSP works with MPI to perform parallel programing. In this chapter, we introduce some MPI related
functions.

6.1 The MPI mode

The MPI mode of the tensor package can be evoked by the procedure

1 set_output_cpu_info(int id,int nproc,int ierr)

The input id specifies the processor of the output procedure writemess which will be introduced in next
chapter. The input nproc should be the number of processors running MPI, and the input ierr is the
standard error code of the package. Note that this subroutine should be called after the initialization of
MPI.

6.2 Inter-core Transportation of Tensors

We can send a tensor from a processor to another using the function

1 MPI_Send_Tensor(Tensor_from,Tensor_to,ID_from,ID_to,ierr,MPI_communicator)

We can broadcast a tensor to all processors in a communicator using the function

1 MPI_BCAST_Tensor(Tensor,ID,ierr,MPI_communicator)

For example

1 include ’mpi.h’

2 use Tensor_type

3 type(Tensor)::rand_tensor

4 integer::num_procs,id,ierr,i,seed

29

30 CHAPTER 6. PARALLEL PROGRAMMING

5

6 call MPI_Init(ierr)

7 call MPI_Comm_size(MPI_COMM_WORLD,num_procs,ierr)

8 call MPI_Comm_rank(MPI_COMM_WORLD,id,ierr)

9

10 set_output_cpu_info(0,num_procs,ierr)

11

12 call rand_tensor%allocate([3,3],’real*8’)

13 call rand_tensor%random() ! generate random tensors

14 if(num_procs>=3)then ! send tensor at No.0 processor to No.2 processor

15 call MPI_Send_Tensor(rand_tensor,rand_tensor,0,2,ierr,MPI_COMM_WORLD)

16 end if

17 call MPI_BCAST_Tensor(rand_tensor,1,ierr,MPI_COMM_WORLD) ! send tensor at No.1 processor

18 ! to all

19

20 call MPI_Finalize(ierr)

6.3 Some MPI functions on tensors

We can perform element-wise operation(taking sum, taking minimal or maximal value) on tensors at all
processors in a communicator, and save the result in some tensor at all processors, using the function

1 MPI_Sum_Tensor(Tensor_in,Tensor_out,ierr,MPI_communicator)

2 MPI_Max_Tensor(Tensor_in,Tensor_out,ierr,MPI_communicator)

3 MPI_Min_Tensor(Tensor_in,Tensor_out,ierr,MPI_communicator)

For example

1 use mpi

2 use Tensor_type

3 type(Tensor)::rand_tensor,tnsum,tnmax,tnmin

4 integer::num_procs,id,ierr,i,seed

5

6 call MPI_Init(ierr)

7 call MPI_Comm_size(MPI_COMM_WORLD,num_procs,ierr)

8 call MPI_Comm_rank(MPI_COMM_WORLD,id,ierr)

9

10 set_output_cpu_info(0,num_procs,ierr)

11

12 call rand_tensor%allocate([3,3],’real*8’)

13 call rand_tensor%random() ! generate random tensors

14

15 call MPI_sum_Tensor(rand_tensor,tnsum,ierr,MPI_COMM_WORLD) ! get sum

16 call MPI_max_Tensor(rand_tensor,tnmax,ierr,MPI_COMM_WORLD) ! get max

6.3. SOME MPI FUNCTIONS ON TENSORS 31

17 call MPI_min_Tensor(rand_tensor,tnmin,ierr,MPI_COMM_WORLD) ! get min

18

19 call MPI_Finalize(ierr)

32 CHAPTER 6. PARALLEL PROGRAMMING

Chapter 7

Others

7.1 Options

The package will automatically check if theres any repeated index name in a tensor. This feature costs some
time on tensors with a large number of indices, and can be enabled and disabled using the functions

1 set_check_dimension()

2 unset_check_dimension()

One may set the maximal length of characters used in the package by

1 set_max_len_of_cha(int length)

This value is by default 5000, and is the upper bound of the length of index name and various other things.

7.2 Random Number Generator

The package provide a simple 16807 random number generator. The random seed is set automatically, and
can be obtained by function

1 int out_randomseed()

Note that after evoking the MPI mode, the package automatically provides different random seeds on each
processor. One may also set the seed manually by subroutine

1 set_seed(int my_seed)

The function to generate random number is

1 real*8 randomnumber()

and the returning value is a real*8 random number from 0 to 1.

33

34 CHAPTER 7. OTHERS

7.3 Writemess

Writemess is a neatly designed subroutine to print characters on screen and/or to a log file. The syntax is
very simple:

1 call writemess(chars message)

As have been introduced, in MPI mode, one can specify which processor to do the output. If the following
subroutine is called

1 set_output_log_unit(int log_unit)

every message that writemess prints on screen will be printed to the log file of unit log_unit.

7.4 Pointer

There is a specially designed way to allow the users to DIY their own tensor functions. This is done through
the type-bound procedure named

1 pointer(pointer data_pointer)

where data_pointer is a pointer that points to an 1D array of the same data type with the tensor. On
return, it will points to the elements of the tensor that align in column-first manner (just like the physical
realization of multi-dimensional arrays in fortran). Thus, a general way to DIY a tensor function/subroutine
would be

1 subroutine my_sub(T)

2 use Tensor_type

3 implicit none

4

5 type(Tensor),intent(inout)::T

6 real(8),pointer::Tdata(:) !supposing T is of double precision

7

8 call T%pointer(Tdata)

9

10 !!!!!!!!!!!!!!!!!!!!!!!!!

11 ! DO SOMETHING ON TDATA !

12 !!!!!!!!!!!!!!!!!!!!!!!!!

13

14 end subroutine

Note that the user can always perform the same task by directly visit the tensor element using type-bound
procedures ?i and setValue. However its usually fastest to use pointer. Furthermore, this is almost the
only possible way to write some deep-level optimized code to get best performance.

7.4. POINTER 35

Finally, we give a realistic example on how to use pointer. In the optimization of a value as a function of
some variables in the form of tensor, a widely used method is call stochastic gradient descent(SGD) method.
First we calculate an approximate value of the gradient of the optimization value with respect to tensor
elements. That is, we get an approximate gradient tensor G. Next, we randomize the gradient tensor to get
R(G), and evolve the tensor variables in the opposite direction of R(G) with a given step length. A common
randomization function R has the form

R(G)i,j,k... = sign(Gi,j,k...) ∗ ri,j,k... (7.1)

where ri,j,k... is a random number in [-1,1] for each i, j, k
The randomization process can be realized using pointer as

1 subroutine randomize(T)

2 use Tensor_type

3 implicit none

4

5 type(Tensor),intent(inout)::T

6 real(8),pointer::Tdata(:) !supposing T is of double precision

7 integer::length,i

8 call T%pointer(Tdata)

9

10 length = T%gettotaldata()

11

12 do i=1,length

13 Tdata(i)=sign(randomnumber(),Tdata(i))

14 end do

15

16 end subroutine

Index

+, −, ∗, /, 19
.?dot., 18
.?i., 16
.?x., 18
.H., 22
.con., 19
.kron., 23
.p., 21
.pb., 21
.pf., 21
?i, 16
?maxmin, 17
?norm, 18
?norm2, 17
?sum, 17
?trace, 17

allocate, 7

backward, 21

conjg, 19
contract, 22

datatype, 8
dim, 15
dimInfo, 13
dynamic, 7

empty, 7
eye, 12

forward, 21
fuse, 20

getclassType, 14
getRank, 15
getType, 14

LQTensor, 25

MPI BCAST Tensor, 29

MPI Max Tensor, 30
MPI Min Tensor, 30
MPI Send Tensor, 29
MPI Sum Tensor, 30

outName, 15

permute, 20
pointer, 34
print, 13

QRTensor, 24

random, 11
randomnumber, 33
read, 27

set output cpu info, 29
set seed, 33
setName, 10
split, 20
static, 7
subtensor, 24
SVDTensor, 25

transpose, 22

write, 27
writemess, 34

36

	Installment
	Creation of a Tensor
	Declaration of a Tensor
	Set the Datatype and the Shape of a Tensor
	Set Value to a Tensor
	Set Names of Tensor Indices
	Useful Functions

	Get Information from a Tensor
	Output Information of a Tensor on Screen
	Get Datatype and Structure Information
	Get Tensor Elements
	Function on a Tensor
	Dot Product of two tensors

	Operation on Tensors
	Operation on elements
	Fusion and split of tensor indices
	Permutation of tensor indices
	Composition
	Decomposition

	Input/Output of a Tensor
	Parallel Programming
	The MPI mode
	Inter-core Transportation of Tensors
	Some MPI functions on tensors

	Others
	Options
	Random Number Generator
	Writemess
	Pointer

